- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Etheridge, Randall (1)
-
Ghasemkhani, Amir (1)
-
Hamshaw, Scott D (1)
-
Hamshaw, Scott D. (1)
-
Haq, Ijaz Ul (1)
-
Kincaid, Dustin W (1)
-
Kincaid, Dustin W. (1)
-
Li, Li (1)
-
Perdrial, Julia N (1)
-
Rizzo, Donna M (1)
-
Seybold, Erin C (1)
-
Stewart, Bryn (1)
-
Underwood, Kristen L (1)
-
Wu, Rui (1)
-
Yang, Lei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding controls on solute export to streams is challenging because heterogeneous catchments can respond uniquely to drivers of environmental change. To understand general solute export patterns, we used a large‐scale inductive approach to evaluate concentration–discharge (C–Q) metrics across catchments spanning a broad range of catchment attributes and hydroclimatic drivers. We leveraged paired C–Q data for 11 solutes from CAMELS‐Chem, a database built upon an existing dataset of catchment and hydroclimatic attributes from relatively undisturbed catchments across the contiguous USA. Because C–Q relationships with Q thresholds reflect a shift in solute export dynamics and are poorly characterized across solutes and diverse catchments, we analysed C–Q relationships using Bayesian segmented regression to quantify Q thresholds in the C–Q relationship. Threshold responses were rare, representing only 12% of C–Q relationships, 56% of which occurred for solutes predominantly sourced from bedrock. Further, solutes were dominated by one or two C–Q patterns that reflected vertical solute–source distributions. Specifically, solutes predominantly sourced from bedrock had diluting C–Q responses in 43%–70% of catchments, and solutes predominantly sourced from soils had more enrichment responses in 35%–51% of catchments. We also linked C–Q relationships to catchment and hydroclimatic attributes to understand controls on export patterns. The relationships were generally weak despite the diversity of solutes and attribute types considered. However, catchment and hydroclimatic attributes in the central USA typically drove the most divergent export behaviour for solutes. Further, we illustrate how our inductive approach generated new hypotheses that can be tested at discrete, representative catchments using deductive approaches to better understand the processes underlying solute export patterns. Finally, given these long‐term C–Q relationships are from minimally disturbed catchments, our findings can be used as benchmarks for change in more disturbed catchments.more » « less
-
Wu, Rui; Hamshaw, Scott D.; Yang, Lei; Kincaid, Dustin W.; Etheridge, Randall; Ghasemkhani, Amir (, IEEE Sensors Journal)
An official website of the United States government
